Abstract
With the increasing incidence of chronic kidney disease (CKD), the development of safe and effective anti-renal fibrosis drugs is particularly urgent. Recently, Baicalin has been considered to have a renal protective effect, but its bioavailability is too low. Therefore, we synthesized baicalin-2-ethoxyethyl ester (BAE) by esterification of baicalin. We hope that this experiment will demonstrate the anti-renal fibrosis effect of BAE and explain its molecular mechanism. In this study, the chronic kidney injury model of SD rats was established by 5/6 nephrectomy, and BAE was given for 28 days. The results showed that after BAE treatment, the serum creatinine and urea nitrogen levels decreased significantly, and the pathological changes in kidneys were improved. In addition, RNA-seq analysis showed that the mechanism of BAE in relieving renal fibrosis was related to the ECM receptor, PI3K/AKT signaling pathway, and inflammatory reaction. The western blotting analysis confirmed that BAE could inhibit the expression of α-SMA, TGF-β1, p-PI3K, p-AKT, p-IκBα, and NF-κB p65. We found that BAE can inhibit the inflammatory reaction and promote the degradation of the extracellular matrix by inhibiting the activation of the PI3K/AKT/NF-κB pathway, thus alleviating the symptoms of renal fibrosis in 5/6Nx rats, which revealed BAE was a potential compound to relieve renal fibrosis effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.