Abstract

BackgroundObesity, fatty liver, type 2 diabetes, and Non-alcoholic fatty liver disease (NAFLD) are all metabolic diseases caused by excess food consumption. Existing drug molecules had negative side effects and caused other diseases to develop (Orlistat causes angioedema, and menstrual irregularities; megestrol acetate causes hypertension, and insomnia). By enhancing lipid consumption and increasing nonshivering thermogenesis, targeting mitochondrial uncoupling protein-1 (UCP1) expression in adipocytes could be an auspicious treatment strategy against obesity or metabolic disorders associated with obesity. MethodsWe used previously produced UCP1-A-GFP reporter cell lines in this investigation to find new pharmacological compounds against obesity or metabolic syndrome, which we then tested in cellular analysis, cytotoxicity, mitochondrial function, mitochondrial DNA quantification, mitochondrial ATP production, and in-silico models. ResultsBaicalein was discovered to play a critical role in obesity prevention via altering mitochondrial function. Baicalein lowers ATP generation while increasing considerable UCP1 gene expression in brown adipocytes. As a result, cellular thermogenesis is boosted. The HEK293T cell line is harmless by baicalein. The investigation by the in-silico study revealed drug-protein interaction and UCP1 binding. Thus, our research clarifies baicalein's therapeutic role in metabolic and obesity-related illnesses via modulating mitochondrial activity (Supplementary Fig. 2). ConclusionsFurther studies are required in both murine and human models to understand the full mechanism of action by mitochondrial modulation. Drug development investigation also requires to development of a precise formulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call