Abstract

Increased matrix metalloproteinase 1 (MMP-1) expression is a feature of photo-aged skin. We investigated the effects of baicalein and sulphoraphane on ultraviolet B (UVB) irradiation-induced MMP-1 expression and apoptosis using human dermal fibroblasts. UVB irradiation not only increased MMP-1 expression, but also caused apoptosis. Both baicalein and sulphoraphane protected cells from UVB irradiation-induced apoptosis, but only baicalein inhibited MMP-1 expression. UVB irradiation activated 12-lipoxygenase, and its product, 12-hydroxyeicosatetraenoic acid, activated TRPV1 channels. The resulting UVB irradiation-induced Ca2+ increase was blocked by the 12-lipoxygenase inhibitor baicalein and the TRPV1 blocker capsazepine, but not by the Nrf2 inducer sulphoraphane. UVB irradiation also increased ROS generation and decreased Nrf2 protein levels. UVB irradiation-induced MMP-1 expression was blocked by the Ca2+ chelator BAPTA, by capsazepine and by TRPV1 silencing. However, induction was unaffected by the antioxidant N-acetylcysteine. ERK phosphorylation and JNK phosphorylation were induced by UVB irradiation, but only ERK phosphorylation was Ca2+ sensitive. Increased MMP-1 expression was blocked by PD98059, but not by SP600125. Thus, increased MMP-1 expression is mediated by increased cytosolic Ca2+ and ERK phosphorylation. UVB irradiation-induced ROS generation is also Ca2+ sensitive, and UVB irradiation-induced apoptosis is caused by increased ROS. Thus, baicalein, by blocking the UVB irradiation-induced cytosolic Ca2+ increase, protects cells from UVB irradiation-induced MMP-1 expression and apoptosis. In contrast, sulphoraphane, by decreasing cellular ROS, protects cells from only UVB-induced apoptosis. Thus, targeting 12-lipoxygenase may provide a therapeutic approach to improving the health of photo-aged human skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call