Abstract

The disruption of the immune system by viral attack is a major influencing factor in the lethality of COVID-19. Baicalein is one of the key effective compounds against COVID-19. The molecular mechanisms regarding the anti-inflammatory properties of Baicalein are still unclear. In this study, we established LPS-induced mice to elucidate the role of Baicalein in the treatment of acute lung injury (ALI) and its potential molecular mechanisms. In vivo experiments showed that Baicalein could significantly ameliorate LPS-induced acute lung injury and reduce proteinous edema in lung tissue. In addition, Baicalein inhibited M1 macrophage polarization, promote M2 macrophage polarization, and regulate inflammatory responses. Furthermore, Baicalein could inhibit the expression of protein molecules associated with pyroptosis and mitigate the lung tissue injury. In summary, we revealed the therapeutic effects of Baicalein in acute lung injury, providing the theoretical basis for its clinical application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.