Abstract

Image memorability represents the degree to which images are remembered or forgotten after a period of time. Studying image memorability in computer vision is the task of finding special characteristics in memorable images, in order to develop a representative model of this type of images. Several approaches have been realised to examine features that can affect image memorability. In this study, the authors use bag‐of‐features as another kind of visual feature descriptor to assess image memorability. The authors’ method based on bag‐of‐visual‐words (BoVWs) technique involves four main steps. First, the authors extract local image features from regions/points of interest which are automatically detected. Then, they encode these local features by mapping them to a created visual vocabulary. Later, the authors apply features pooling and normalisation techniques to obtain image BoVW representation. Finally, the authors use this representation to examine image memorability as a problem of classification. They present different implementation choices for each step and compare reached results. The authors’ method performs best significant results in comparison with other approaches found in literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.