Abstract

The clinical application of Doxorubicin (DOX) is limited due to its cardiotoxicity. Mitophagy dysfunction is the primary cause of DOX-induced cardiotoxicity (DIC). However, the precise mechanism by which DOX regulates mitophagy remains elusive. Bag2 (BCL2-associated athanogene 2) is a cochaperone implicated in multiple pathological states. The aim of this study was to investigate the potential cardio-protective effects of Bag2 in DIC. C57BL/6 mice and AC16 cells were used to establish DIC model. The expression of Bag2 were measured by western blotting and immunohistochemical. The effects of Bag2 on DIC were assessed through functional gain and loss experiments. Through in vitro and in vivo experiments, we found that Bag2 expression was significantly reduced after DOX treatment. Both Bag2 knockdown and DOX administration resulted in apoptosis, mitochondrial dysfunction, and impaired mitophagy. Conversely, Bag2 overexpression exerted protective effects against these phenotypes induced by DOX stimulation. Mechanistically, Bag2 maintained mitophagy activation by binding to Pink1 and protecting it from proteasome-dependent degradation, thereby preserving mitochondrial function and protecting against myocardial lesions. Our findings suggest that Bag2 may serve as a promising therapeutic target for the treatment of DIC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.