Abstract
The vitamin D receptor (VDR) is a member of the steroid/retinoid receptor superfamily of nuclear receptors that has potential tumor-suppressive functions. We show here that VDR interacts with and is regulated by BAG1L, a nuclear protein that binds heat shock 70-kDa (Hsp70) family molecular chaperones. Endogenous BAG1L can be co-immunoprecipitated with VDR from prostate cancer cells (ALVA31; LNCaP) in a ligand-dependent manner. BAG1L, but not shorter non-nuclear isoforms of this protein (BAG1; BAG1M/Rap46), markedly enhanced, in a ligand-dependent manner, the ability of VDR to trans-activate reporter gene plasmids containing a vitamin D response element in transient transfection assays. Mutant BAG1L lacking the C-terminal Hsc70-binding domain suppressed (in a concentration-dependent fashion) VDR-mediated trans-activation of vitamin D response element-containing reporter gene plasmids, without altering levels of VDR or endogenous BAG1L protein, suggesting that it operates as a trans-dominant inhibitor of BAG1L. Gene transfer-mediated elevations in BAG1L protein levels in a prostate cancer cell line (PC3), which is moderately responsive to VDR ligands, increased the ability of natural (1alpha,25(OH)(2) vitamin D(3)) and synthetic (1alpha, 25-dihydroxy-19-nor-22(E)-vitamin D(3)) VDR ligands to induce expression of the VDR target gene, p21(Waf1), and suppress DNA synthesis. Thus, BAG1L is a direct regulator of VDR, which enhances its trans-activation function and improves tumor cell responses to growth-suppressive VDR ligands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.