Abstract
The combination of blockchain and Internet of Things technology has made significant progress in smart agriculture, which provides substantial support for data sharing and data privacy protection. Nevertheless, achieving efficient interactivity and privacy protection of agricultural data remains a crucial issues. To address the above problems, we propose a blockchain-assisted federated learning-driven support vector machine (BAFL-SVM) framework to realize efficient data sharing and privacy protection. The BAFL-SVM is composed of the FedSVM-RiceCare module and the FedPrivChain module. Specifically, in FedSVM-RiceCare, we utilize federated learning and SVM to train the model, improving the accuracy of the experiment. Then, in FedPrivChain, we adopt homomorphic encryption and a secret-sharing scheme to encrypt the local model parameters and upload them. Finally, we conduct a large number of experiments on a real-world dataset of rice pests and diseases, and the experimental results show that our framework not only guarantees the secure sharing of data but also achieves a higher recognition accuracy compared with other schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.