Abstract

It is well known that the set of isomorphism classes of extensions of groups with abelian kernel is characterized by the second cohomology group. In this paper we generalise this characterization of extensions to a natural class of extensions of monoids, the cosetal extensions. An extension is cosetal if for all g,g' in G in which e(g) = e(g'), there exists a (not necessarily unique) n in N such that g = k(n)g'. These extensions generalise the notion of special Schreier extensions, which are themselves examples of Schreier extensions. Just as in the group case where a semidirect product could be associated to each extension with abelian kernel, we show that to each cosetal extension (with abelian group kernel), we can uniquely associate a weakly Schreier split extension. The characterization of weakly Schreier split extensions is combined with a suitable notion of a factor set to provide a cohomology group granting a full characterization of cosetal extensions, as well as supplying a Baer sum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.