Abstract
Given an infinite-dimensional vector space V, we consider the semigroup GS (m, n) consisting of all injective linear α: V → V for which codim ran α = n, where dim V = m ≥ n ≥ ℵ0. This is a linear version of the well-known Baer–Levi semigroup BL (p, q) defined on an infinite set X, where |X| = p ≥ q ≥ ℵ0. We show that, although the basic properties of GS (m, n) are the same as those of BL (p, q), the two semigroups are never isomorphic. We also determine all left ideals of GS (m, n) and some of its maximal subsemigroups; in this, we follow previous work on BL (p, q) by Sutov and Sullivan as well as Levi and Wood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.