Abstract

Human–computer interaction systems have been developed in large numbers and quickly applied to sports. Badminton is the best sport for applying robotics because it requires quick recognition and fast movement. For the development of badminton recognition and tracking systems, it is important to accurately identify badminton, venues, and opponents. In this paper, we designed and developed a badminton recognition and tracking system using two 2 000 000-pixel high-speed cameras. The badminton tracking system has a transmission speed of 250[Formula: see text]fps and the maximum speed of the badminton resonator is 300[Formula: see text]km/h. The system uses the camera link interface Camera Link to capture images of high-speed cameras and process all captured images in real time using different regions of interest settings. In order to improve accuracy, we propose a new method for judging the center point of badminton. We have proposed a detector that detects the four corner points of the field by using the contour information of the badminton court when the approximate position of the badminton court is known. We set the sensing area according to the approximate position of the badminton court and use the histogram in the sensing area to select the point closest to the contour. Specify the intersection of the line as the corner point of the badminton court. The proposed angle detector has a high detection rate. It is more than 10 times more accurate than traditional detectors. The moving badminton is detected by an elliptical detector. We propose a method to find the center of the correct ellipse from the four candidates by selecting the four candidate contours of the ellipse. Compared to conventional circular detectors and points on three-dimensional coordinates, the proposed elliptical detector reduces the error by about 3[Formula: see text]mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call