Abstract

We present new key paleomagnetic pole at 13°S, 152°E (k = 21, A95 = 7.8°) for recently identified 1864.4 ± 2.7 Ma (weighted mean age of four PbPb ages) mafic magmatic event, based on a detailed paleomagnetic study of dolerite dykes and sills intruding Archean basement rocks and Tadipatri formation of the Cuddapah basin, Dharwar craton respectively. The PbPb baddeleyite geochronology yields a crystallisation age of 1867.1 ± 1.0 Ma (MSWD = 1.02) for N77°E trending dyke in the southern region to Cuddapah basin. This new age obtained, confirms the presence of ~1864 Ma magmatic episode with a spatial extent of ~400 km in the Eastern Dharwar craton, within the brief period of ~5 Ma. The paleomagnetic results in these dykes revealed reverse polarity magnetisation direction with mean D = 107°, I = 24° (N = 13 sites, α95 = 10°). Here, we also update the normal polarity magnetic directions on ~1.89 Ga swarm, and the corresponding paleopole situated at 21°N, 336°E (N = 79 sites, A95 = 3.6°). The paleoposition of India is constrained around the equator during ~1.89–1.86 Ga time. The paleogeographic reconstructions were also been attempted at ~1.89 Ga and ~ 1.86 Ga with available key poles from other cratons, indicates the possibility of single plume acting as a source for two distinguishable radial emplacement of mafic dyke swarms across India (Dharwar and Bastar craton) and Western Australia (Yilgarn craton) within a time span of ~35 Ma. The individual movement of India, Baltica and Siberia with a drift rate of ~5.55 cm/yr towards the south, whereas Amazonia craton has moved rapidly to the north (~24.9 cm/yr), do not suggest the amalgamation of a supercontinent (Columbia/ Nuna) during ~1.88–1.86 Ga time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call