Abstract

Respiratory syncytial virus (RSV) is a major viral pathogen responsible for severe respiratory tract infections in infants, young children, and the elderly. The RSV fusion (F) protein is highly conserved among RSV subgroups A and B and is the major protective immunogen. A genetically-engineered version of the RSV F protein was produced in insect cells using the baculovirus expression system. To express a secreted form of this protein, the transmembrane domain was eliminated by removing the region of the gene encoding 48 amino acids at the C-terminus. Production of the truncated RSV F protein (RSV-Fs) was compared in two different insect cell lines, Spodoptera frugiperda (Sf9) and Trichoplusia ni (High Five). The yield of RSV-Fs secreted from High Five insect cells was over 7-fold higher than that from Sf9 insect cells. Processing of the RSV-Fs protein was also different in the two insect cell lines. N-terminal sequencing demonstrated that while most of the RSV-Fs protein secreted by High Five cells was correctly processed at the F2-F1 proteolytic cleavage site, most of the RSV-Fs protein secreted by Sf9 cells was unprocessed or incorrectly processed. Antigenicity of the major RSV F neutralization epitopes was maintained in the RSV-Fs protein secreted from High Five cells. The RSV-specific neutralizing antibody titres in the sera of cotton rats immunized with the RSV-Fs protein were equivalent to those in the sera of animals intranasally inoculated with live RSV. Animals immunized with either live RSV or the immunoaffinity purified RSV-Fs protein from High Five cells were completely protected against live virus challenge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call