Abstract

The chemical signaling mechanism known as "bacterial quorum sensing" (QS) is normally interpreted as allowing bacteria to detect their own population density, in order to coordinate gene expression across a colony. However, the release of the chemical signal can also be interpreted as a means for one or a few cells to probe the local physical properties of their microenvironment. We have studied the behavior of the LuxI/LuxR QS circuit of Vibrio fischeri in tightly confining environments where individual cells detect their own released signals. We find that the lux genes become activated in these environments, although the activation onset time shows substantial cell-to-cell variability and little sensitivity to the confining volume. Our data suggest that noise in gene expression could significantly impact the utility of LuxI/LuxR as a probe of the local physical environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call