Abstract

The application of packing agents affects the final surgical outcomes in treating otitis media (OM) and introduces the risk of infection. To decrease the infectious risks of packing agents and even introduce positive bacteriostatic functions, a kind of PPDO-grafted Ag-incorporated TiO2 nanoparticles (Ag@TiO2-PPDO NP)-coated gauzes were prepared by a solution immersion method. Morphologies and in vitro Ag+ releasing of Ag@TiO2-PPDO NP coated gauzes were determined by scanning electron microscope (SEM) and inductively coupled plasma-mass spectrum (ICP-Ms). Ag@TiO2-PPDO NP could respond to visible light, which might make Ag@TiO2-PPDO NP inhibit the proliferation of bacteria continually and positively with irradiation of visible light. Then the bacteriostatic effects of these gauzes on OM pathogens were investigated in vitro and in vivo. These gauzes could inhibit the proliferation of pathogenic Staphylococcus aureus (S. aureus) and Streptococcus pneumoniae (S. pneumoniae) in vitro and rat subcutaneous infection models. Specifically, the bacteriostatic effect of these gauzes on S. aureus and S. pneumoniae could be enhanced with irradiation by visible light in vitro. Further, the rat external auditory canal infection model verified the enhanced bacteriostatic effect of Ag@TiO2-PPDO-coated gauzes on S. aureus with irradiation by visible light. The Ag@TiO2-PPDO-coated gauzes are promising for packing materials after OM surgery and could reduce postoperative antibiotic requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call