Abstract
In nature, biological machines and motors can selectively transport cargoes across the lipid membranes to efficiently perform various physiological functions via ion channels or ion pumps. It is interesting and challengeable to develop artificial motors and machines of nanodimensions to controllably regulate mass transport in compartmentalized systems. In this work, we show a system of artificial molecular motors that uses light energy to perform transmembrane molecule transport through synthetical nanochannels. After functionalizing the polymer nanochannels with azobenzene derivatives, these nanomachines exhibit autonomous selective transport behavior over a long distance upon simultaneous irradiation with UV (365 nm) and visible (430 nm) light. With new strategies or suitable materials for directed molecular movement, such device can be regarded as a precursor of artificial light-driven molecular pumps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.