Abstract

PDF HTML阅读 XML下载 导出引用 引用提醒 珠江河网冬季浮游细菌群落结构及其影响因素 DOI: 作者: 作者单位: 1. 中国水产科学研究院珠江水产研究所, 广东 广州 510380;2. 上海海洋大学水产与生命学院, 上海 201306 作者简介: 王松鸽(1993-),女,硕士研究生,从事渔业环境保护研究.E-mail:18703628371@163.com 通讯作者: 中图分类号: S931 基金项目: 国家重点研发计划项目(2018YFD0900802);中国水产科学研究院中央非盈利机构专项科研基金项目(2015A01YY02). Bacterioplanktonic community's composition and their environmental impact factors of the Pearl River Delta in winter Author: Affiliation: 1. Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China;2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China Fund Project: 摘要 | 图/表 | 访问统计 | 参考文献 | 相似文献 | 引证文献 | 资源附件 | 文章评论 摘要:为了解珠江河网冬季浮游细菌群落结构,探讨影响其群落结构的环境因素,于2017年11月和2018年1月在珠江河网(112.18°E~113.51°E,22.38°N~23.17°N)采集表层水样,借助Illumina MiSeq高通量测序平台,运用16S rDNA扩增子技术研究珠江河网冬季浮游细菌群落结构,使用R(3.5.2)软件包以及SPSS进行统计分析及作图。结果表明,变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)、蓝细菌门(Cyanobacteria)是珠江河网丰度较高的门类,细菌群落优势种群依次为γ-变形菌纲(γ-Proteobacteria)、放线菌纲(Actinobacteria)和α-变形菌纲(α-Proteobacteria)。珠江河网冬季浮游细菌具有较高的菌群多样性(两次样品的Shannon指数分别为6.78±0.29、6.23±0.71),NMDS分析表明,浮游细菌群落结构之间不存在显著的地域差异。Pearson相关性分析表明,温度与γ-变形菌纲(<0.01)的丰度显著正相关,pH与放线菌纲(<0.01;Simpson:<0.05)。冗余分析(RDA)结果显示,温度、pH是影响浮游细菌群落的主要因子。 Abstract:Along with the development of economy and the living standard of residents, the discharge of industrial and agricultural wastewater and municipal domestic sewage has a serious impact on the water quality of the Pearl River Delta. Bacterial communities are important components in riverine ecosystem and play key roles in the degradation and transformation of various pollutions in river environment. Bacterioplanktonic community responds to changes in biotic and abiotic factors that are amplified during spring and summer these wet seasons, however, whether communities respond to environmental disturbance in dry seasons remains unknown. In this study, we collected surface water samples from the Pearl River Delta (112.18°E-113.51°E, 22.38°N-23.17°N) in November 2017 and January 2018, using high-throughput sequencing of 16S rDNA gene amplicons on the Illumina Miseq platform, to investigate the bacterioplanktonic community's composition and their environmental impact factors of the Pearl River Delta in winter. Total DNA was extracted from water samples by using DNA extraction kit (Magen Hipure Spil DNA Kit), and DNA concentration was determined by Qubit® dsDNA HS Assay Kit. The targeted V3-V4 regions were amplified with the primers set (341f-CCTACGRRBGCASCAGKVRVGAA; 806r-GGACTACNVGGGTWTCTAATCC). The purified PCR products were sequenced on Illumina MiSeq (Illumina, San Diego, CA, USA) platform, and raw reads were screened by QⅡME (1.9.1), with the removal of chimeric sequences by UNCHIME. Operational taxonomic units (OTUs) were generated by Vsearch (1.9.6) with similarity at 97%, and aligned against reference database SILVA (http://www.arb-sliva.de). Αlpha diversity indices such as Shannon and Chao 1 index, and beta diversity based on Bray-Curtis difference coefficients were calculated in R (3.5.2) software (http://www.r-project.org) according to normalized OTU abundance. Non-metric multidimensional scaling (NMDS) was used to test communities dissimilarity, and analysis of similarities (ANOSIM) was used to test the similarity among different communities, by using vegan (2.5.2) package. Redundancy analysis (RDA) was used to analyze the relationship between bacterial community and environmental factors by using vegan (2.5.2) and ggplot2. Pearson correlation analysis was carried out with SPSS (19.0) statistical software (IBM Corporation, USA) to determine the relationship between environmental factors and the diversity of planktonic bacteria (Shannon index and Simpson index) and the abundance of specific bacteria. The results showed that Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria were abundant phyla in Pearl River Delta. γ- was the most abundant class among the communities, followed by Actinobacteria and α-Proteobacteria. The bacterioplanktonic community showed a relatively high diversity in the Pearl River Delta in winter, with no significant differences observed in bacterioplanktonic community's composition among all sampling sites. Pearson correlation analysis showed that the abundance of γ-Proteobacteria (P < 0.01) was positively correlated with temperature, while the diversity index was negatively correlated with PH (Shannon, < 0.007) and the abundance of α-Proteobacteria ( < 0.05) was negatively correlated with dissolved oxygen. RDA showed that temperature, pH were the main driving factors affecting the structure of bacterioplanktonic community. Temperature was identified as the main environmental factor affecting planktonic bacteria community. Previous studies shown the composition of bacterial community was driven more by temperature and the average cell size of planktonic bacteria community decreased with the increase of temperature. In addition, temperature was related to the diversity of estuarine ecosystems. Seasonal temperature variation was also considered to be the main variable affecting the dynamics of sediment bacterial community in the Pearl River Estuary. The pH was another major environmental factor affecting the structure and diversity of bacterial communities. pH was generally considered as an indicator of , in the study, negative correlation was observed between pH and Actinobacter (=0.016), which was consistent with the results of other studies. These results might provide fundamental information on bacterioplanktonic community composition and environmental factors in winter Pearl River Delta. 参考文献 相似文献 引证文献

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call