Abstract

Increases in the terrestrial export of dissolved organic carbon (C) to rivers may be associated with additional loading of organic nitrogen (N) and phosphorus (P) to the coastal zone. However, little is known about how these resources interact in the regulation of heterotrophic bacterioplankton metabolism in boreal coastal ecosystems. Here, we measured changes in bacterioplankton production (BP) and respiration (BR) in response to full-factorial (C, N, and P) enrichment experiments at two sites within the Öre estuary, northern Sweden. The BR was stimulated by single C additions and further enhanced by combined additions of C and other nutrients. Single addition of N or P had no effect on BR rates. In contrast, BP was primarily limited by P at the site close to the river mouth and did not respond to C or N additions. However, at the site further away from the near the river mouth, BP was slightly stimulated by single additions of C. Possibly, the natural inflow of riverine bioavailable dissolved organic carbon induced local P limitation of BP near the river mouth, which was then exhausted and resulted in C-limited BP further away from the river mouth. We observed positive interactions between all elements on all responses except for BP at the site close to the river mouth, where P showed an independent effect. In light of predicted increases in terrestrial P and C deliveries, we expect future increases in BP and increases of BR of terrestrially delivered C substrates at the Öre estuary and similar areas.

Highlights

  • Despite representing a small area of the global ocean, coastal zones are major hotspots for biogeochemical cycling of the macroelements such as organic carbon, nitrogen (N), and phosphorus (P) in marine environments

  • While it is difficult to predict how climate change will affect the riverine export of bioavailable nutrients and organic carbon to estuaries, our results shed light on the role of resource availability on the regulation of bacterial metabolism, which can be used to speculate how estuarine systems will respond to different scenarios of DOM and nutrient increase

  • Our study shows that P is a key nutrient, controlling bacterioplankton secondary production (BP) in the Öre estuary, as BP was found primarily limited by P

Read more

Summary

Introduction

Despite representing a small area of the global ocean, coastal zones are major hotspots for biogeochemical cycling of the macroelements such as organic carbon, nitrogen (N), and phosphorus (P) in marine environments. A larger amount of terrestrial dissolved organic carbon (DOC) will reach the coastal zone due to increased terrestrial runoff [7]. Increased nutrient loading may occur [5, 8,9,10,11,12] Such nutrients include N and P bound to the humic fraction of the terrestrially derived DOC, which may become available to estuarine microbes through enzymatic or photochemical processing [13, 14]. In boreal unproductive estuaries where heterotrophic bacterioplankton rely on the supply of terrestrial substrates, such as the Öre estuary in the northern Baltic Sea [15], increased export of DOC and nutrients is expected to have

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.