Abstract

The ability of fractions of dissolved organic carbon (DOC) of different molecular weights (MW) to support bacterial growth was studied in batch culture experiments. Natural pelagic bacteria were inoculated into particle-free (0.2-mum filtered) water, taken from 10 oligotrophic lakes of differing humic content, and either used without further treatments or ultrafiltered to remove DOC of >10,000 MW or >1,000 MW. Stationaryphase abundance of bacteria in the cultures was used as an estimate of bacterial carrying capacity. High-MW DOC (>10,000) comprised an increasing fraction of total DOC with increasing total DOC and humic content of the lakes. High-MW DOC was generally more available to bacteria (i.e., more bacteria were produced per unit of organic carbon initially present) than low-MW (<10,000) DOC. The availability to bacteria of this high-MW DOC decreased with increasing humic content. However, although less available in humic lakes than in clearwater lakes, the higher abundance of high-MW DOC made it quantitatively more important as a bacterial substrate; i.e., a larger fraction of the total bacterial yield of the cultures was due to high-MW DOC compounds in humic lakes than in clearwater lakes. On the average, 48% of bacterial growth occurred at the expense of DOC of <10,000 MW. DOC of <1,000 MW was responsible for an average of 22% of bacterial growth, with no significant correlation to humic content and DOC concentration of lakes. The DOC which supports bacterial growth, as well as the total DOC, is of different quality in humic and clearwater lakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.