Abstract
The stability of microbial community composition under different environmental conditions is an important part of microbial ecology, but has not been investigated in such depth before. In this study, we investigated the composition of the bacterioplankton community composition (BCC) and its stability under different temperatures (15, 25 and 35°C, respectively) and nutrient conditions (control vs. nitrogen- and phosphorus-enriched) in aquatic microcosms. The BCC was analysed using denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene, followed by cloning and sequence analysis. BCC in the microcosms significantly changed under different temperature and nutrient conditions. Based on the results from clone libraries, ecological diversification were observed within two ubiquitous and dominant genera, Methylophilus and Polynucleobacter, under different temperature and nutrient conditions. Putative ultramicrobacteria, which included Actinobacteria, Polynucleobacter sp., LD12 and LD28 clusters and bacteria affiliated with subcluster I of Methylophilus, were found to dominate in bacterioplankton communities at higher temperatures (25 and 35°C), regardless of nutrient conditions. We also observed that the rate of BCC change increased at higher temperatures and this increase was more pronounced in nutrient-enriched microcosms. These results indicated that bacterioplankton communities become unstable and decrease in size with increased temperature and in nutrient-enriched conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.