Abstract

Treatment of infections caused by multidrug-resistant (MDR) Gram-negative bacteria is challenging, a potential solution for which is the use of bacteriophage-derived lytic enzymes. However, the exogenous action of bacteriophage lysins against Gram-negative bacteria is hindered due to the presence of an impermeable outer membrane in these bacteria. Nevertheless, recent research has demonstrated that some lysins are capable of permeating the outer membrane of Gram-negative bacteria with the help of signal peptides. In the present study, we investigated the genomes of 309 bacteriophages that infect Gram-negative pathogens of clinical interest in order to determine the evolutionary markers of signal peptide-containing lysins. Complete genomes displayed 265 putative lysins, of which 17 (6.41%) contained signal-arrest-release motifs and 41 (15.47%) contained cleavable signal peptides. There was no apparent relationship between host specificity and lysin diversity. Nevertheless, the evolution of lysin genes might not be independent of the rest of the bacteriophage genome once pan-genome clustering and lysin diversity appear to be correlated. In addition, signal peptide- and signal-arrest-release-containing lysins were monophyletically distributed in the protein cladogram, suggesting that the natural selection of holin-independent lysins is divergent. Our study screened 58 (21.89%) out of 265 potential candidates for in vitro experimentation against MDR bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call