Abstract

Bacteriophage T7 encodes a serine/threonine-specific protein kinase that phosphorylates multiple cellular proteins during infection of Escherichia coli. Recombinant T7 protein kinase (T7PK), normally purified in phosphorylated form, exhibits a modest level of phosphotransferase activity. A procedure is described that provides dephosphorylated T7PK with an enhanced ability to phosphorylate protein substrates, including translation initiation factor IF1 and the nuclease domain of ribonuclease III. Mass spectrometric analysis identified Thr12 as the site of IF1 phosphorylation in vitro. T7PK undergoes Mg2+-dependent autophosphorylation on Ser216 in vitro, which also is modified in vivo. The inability to isolate the presumptive autophosphorylation-resistant T7PK Ser216Ala mutant indicates a toxicity of the phosphotransferase activity and suggests a role for Ser216 modification in limiting T7PK activity during infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.