Abstract

Metazoans were proposed to host bacteriophages on their mucosal surfaces in a symbiotic relationship, where phages provide an external immunity against bacterial infections and the metazoans provide phages a medium for interacting with bacteria. However, scarce empirical evidence and model systems have left the phage-mucus interaction poorly understood. Here, we show that phages bind both to porcine mucus and to rainbow trout (Oncorhynchus mykiss) primary mucus, persist up to 7 days in the mucosa, and provide protection against Flavobacterium columnare Also, exposure to mucus changes the bacterial phenotype by increasing bacterial virulence and susceptibility to phage infections. This trade-off in bacterial virulence reveals ecological benefit of maintaining phages in the metazoan mucosal surfaces. Tests using other phage-bacterium pairs suggest that phage binding to mucus may be widespread in the biosphere, indicating its importance for disease, ecology, and evolution. This phenomenon may have significant potential to be exploited in preventive phage therapy.IMPORTANCE The mucosal surfaces of animals are habitat for microbes, including viruses. Bacteriophages-viruses that infect bacteria-were shown to be able to bind to mucus. This may result in a symbiotic relationship in which phages find bacterial hosts to infect, protecting the mucus-producing animal from bacterial infections in the process. Here, we studied phage binding on mucus and the effect of mucin on phage-bacterium interactions. The significance of our research is in showing that phage adhesion to mucus results in preventive protection against bacterial infections, which will serve as basis for the development of prophylactic phage therapy approaches. Besides, we also reveal that exposure to mucus upregulates bacterial virulence and that this is exploited by phages for infection, adding one additional layer to the metazoan-bacterium-phage biological interactions and ecology. This phenomenon might be widespread in the biosphere and thus crucial for understanding mucosal diseases, their outcome and treatment.

Highlights

  • Metazoans were proposed to host bacteriophages on their mucosal surfaces in a symbiotic relationship, where phages provide an external immunity against bacterial infections and the metazoans provide phages a medium for interacting with bacteria

  • Previous studies have indicated that mucus has a positive effect on F. columnare growth and virulence-related traits, suggesting that interaction with the mucosal surfaces is important for the bacterial pathogenesis [15,16,17,18,19]

  • Since mucin exposure changes the F. columnare phenotypic characteristics, we studied whether the presence of mucin or mucus affects bacterial susceptibility to phage infections

Read more

Summary

Introduction

Metazoans were proposed to host bacteriophages on their mucosal surfaces in a symbiotic relationship, where phages provide an external immunity against bacterial infections and the metazoans provide phages a medium for interacting with bacteria. We reveal that exposure to mucus upregulates bacterial virulence and that this is exploited by phages for infection, adding one additional layer to the metazoan-bacterium-phage biological interactions and ecology This phenomenon might be widespread in the biosphere and crucial for understanding mucosal diseases, their outcome and treatment. In 2013, another layer of complexity was added to the already convoluted system when the bacteriophage adherence to mucus (BAM) model was proposed [8] This model, based on indirect evidence and in vitro testing, proposes an important and so far overlooked symbiosis between metazoans and bacteriophages (phages): Phages would concentrate on mucosal surfaces by weak interactions with mucins, creating a ubiquitous non-host-derived immunity against bacterial invaders during the mucus colonization process. While phage therapy seems a promising option against this [21] and many other diseases, detailed information on the interactions of phages and their host bacteria in the mucosal environment is needed

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.