Abstract

The aim of this work was to purify and characterize the bacteriocin produced by Lactococcus lactis subsp. lactis KT2W2L previously isolated from mangrove forests in southern Thailand, in order to evaluate its potential as new food protective agent. The active peptide from the cell-free supernatant of this strain was purified in 4 steps: (1) precipitation with 70% saturated ammonium sulfate, (2) elution on a reversed-phase cartridge using different concentrations of acetonitrile, (3) cation-exchange chromatography and (4) final purification by reversed-phase HPLC on a C8 column. The molecular mass of 3,329.5254Da of the purified bacteriocin, determined by mass spectrometry, is nearly identical to that of peptide nisin Z. The activity of the purified bacteriocin was unaffected by pH (2.0-10.0), thermostable but was sensitive to proteolytic enzymes. The bacteriocin activity was stable after 8weeks of storage at -20°C and 7weeks of storage at 4°C, but decreased after 3weeks of storage at 37°C. It was stable when incubated for 1month at 4°C in 0-30% NaCl. Inhibitory spectrum of this bacteriocin showed a wide range of activity against similar bacterial strains, food-spoilage and food-borne pathogens. L. lactis subsp. lactis KT2W2L was sensitive to kanamycin, penicillin and tetracycline but resistant to ampicillin, gentamicin and vancomycin. The fragment obtained after amplification of genomic DNA from L. lactis subsp. lactis KT2W2L, with specific primers for bacteriocin genes, presented 99% homology to the nisin Z gene. PCR amplification demonstrated that L. lactis subsp. lactis KT2W2L does not harbor virulence genes cylA, cylB, efaAfs and esp. The bacteriocin and its producing strain may find application as bio-preservatives for reduction in food-spoilage and food-borne pathogens in food products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call