Abstract

The surge of medical devices associated with nosocomial infection (NI) cases, especially by multidrug-resistant (MDR) bacterial strains, is one of the pressing issues of present health care systems. Metal oxide nanoparticles (MNPs) have become promising antibacterial agents against a wide range of bacterial strains. This work study is on the bactericidal capacity of heterogeneous TiO2/ZnO nanocomposites with different weight percentages and concentrations against common MDR and non-MDR bacterial strains. The profiles on disk diffusion, minimum inhibitory concentration, minimum bactericidal concentration, tolerance determination, time-kill, and biofilm inhibition assay were determined after 24 h of direct contact with the nanocomposite samples. Findings from this work revealed that the heterogeneous TiO2/ZnO nanocomposite with a 25T75Z weight ratio showed an optimal tolerance ratio against Gram-positive and -negative bacteria, indicating their bactericidal capacity. Further observation suggests that higher molar ratio of Zn2+ may possibly involve generation of active ion species that enhance bactericidal effect against Gram-positive bacterial strains, especially for the MDR strains. Nano-based technology using MNPs may provide a promising solution for the prevention and control of NIs. Further work on biocompatibility and cytotoxicity profiles of this nanocomposite are needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.