Abstract

Chitinases play a vital role during the pathogenic invasion and immunosuppression in various organisms including invertebrates and vertebrates. In this study, we have investigated the participation of MrChit-3 (Macrobrachium rosenbergii Chitinase-3) during host-pathogenic interaction in freshwater prawn, M. rosenbergii. Quantitative real-time PCR analysis showed that the expression of MrChit-3 was up-regulated during bacterial, viral and laminarin challenge. Moreover, to understand the antimicrobial role of the GH18 domain, a putative membrane-targeting antimicrobial peptide (MrVG) was identified from the GH18 domain region of the protein and it was chemically synthesized. Physico-chemical features of the GH18 derived antimicrobial peptide (AMP) was assessed by various in silico tools and the antimicrobial property of the peptide was confirmed from in vitro studies. The membrane targeting mechanism of the peptide was determined by flow cytometry (FACS) and scanning electron microscope (SEM) analysis. Interestingly, the peptide was able to inhibit the growth of a chitinolytic fungal pathogen, Aspergillus niger, which was isolated from the shells of M. rosenbergii. The toxicity studies such as hemolysis activity on human blood erythrocytes and cell viability assay with primary kidney cells, HEK293 of MrVG revealed that the peptide was not involved in inducing any toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.