Abstract

Hybrid particles with immobilized silver nanoparticles (AgNPs) receive a lot of attention due to their excellent antibacterial activity with the prevention of inherent aggregation of AgNPs. In this study, serial sized silica substrate particles (231, 401, and 605nm) and their corresponding hybrid particles with AgNPs (~ 30nm) are prepared, with detailed bactericidal images of the corresponding particles at various times. Their bactericidal activity is elucidated for both Gram-positive Streptococcus agalactiae and Gram-negative Escherichia coli CN13, which show the size of 0.8μm × 0.9μm and 1.3μm × 1.8μm, respectively. There is a large difference in the bactericidal activity between the smallest (231nm, 3-log10 reduction) and larger (401 and 605nm, 6-log10 reduction) silica substrates, whereas there is hardly a difference between the latter. Their effective total surface area (ETSA) is considered important for their bactericidal activity, based on the nearly equal large ETSA of the well-dispersed two larger silica substrates and the much smaller ETSA of the agglomerated smallest substrates. Submicron-sized pits appear on the bacterial membrane by direct contact with the hybrid particles, implicating the importance of ETSA. Still, further research is needed with much different silica substrate sizes to fully elucidate the impact of the silica substrate on the bactericidal activity of immobilized AgNPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call