Abstract

Plant growth-promoting bacteria (PGPB) are capable of alleviating environmental stress and eliciting tolerance in plants to promote their growth. Several PGPB elicit physical and/or chemical changes related to plant defense in the form of induced systemic resistance (ISR) under biotic stress. Researchers emphasized that PGPB-elicited ISR has suppressed plant diseases caused by a range of pathogens in both the greenhouse and field. PGPB-elicited physical and chemical changes in plants result in enhanced tolerance to drought, salt, and other factors that have been described as a form of induced systemic tolerance under abiotic stress. This review will focus on recent research concerning interactions between PGPB and plants under biotic and abiotic stresses. The use of PGPB requires precise understanding of the interactions between plant-bacteria, among bacteria-microbiota, and how biotic and abiotic factors influence these relationships. Consequently, continued research is needed to develop new approaches to ameliorate the efficiency of PGPB and to understand the ecological, genetic, and biochemical relationships in their habitat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call