Abstract
Metal-reducing bacteria play an important role in the release and mobilization of arsenic from sediments into groundwater. This study aimed to investigate the influence of nitrate on arsenic bio-release. Microcosm experiments consisting of high arsenic sediments and indigenous bacterium Bacillus sp. D2201 were conducted and the effects of nitrate on the mobilization of As/Fe determined. The results show arsenic release is triggered by iron reduction, which is regulated by nitrate. Increasing the nitrate concentration from 0 to 1 and 3 mM decreased Fe(III) reduction by 62.5% and 16.9% and decreased As(V) bio-release by 41.5% and 85.5%, respectively. Moreover, the results of step-wise Wenzel sequential extractions indicate nitrate addition prevents the transformation of poorly crystalline iron oxides to well crystalline iron oxides. Overall, nitrate appears to have a dual effect, inhibiting both iron reduction and arsenic release by incubation strain D2201. This study offers new insights regarding the biogeochemistry of arsenic in groundwater systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.