Abstract

Mineral structures formed by bacterial and microalgal biofilms growing on the archaeological surface in Maltese hypogea were studied using Energy Dispersive X-Ray Spectroscopy (EDS) coupled to Environmental Scanning Electron Microscopy (ESEM), X-ray micro-diffraction (XRD) and X-ray fluorescence (XRF). These techniques have shown that mineral structures having different morphologies and chemical composition were associated with the microorganisms in the subaerophytic biofilm. Salt efflorescences and mineral deposits on the archaeological surface were often formed from gypsum (CaSO 4∙ 2H 2O), halite (NaCl) and calcite (CaCO 3). Biogenic carbonates produced by microbial activities were a common occurrence. These assumed different forms, such as the production of mineral coats around cyanobacterial sheaths and the occurrence of calcite fibres with different morphologies on the surface of the biofilms. Moreover, vaterite (CaCO 3) spherulites which appeared hollow in cross-section were observed. The presence of struvite was recorded from one catacomb site. These investigations have facilitated the study of the neoformation of metastable minerals by microbially mediated processes, which potentially contribute to a better understanding of the biodeterioration of artworks in Maltese palaeo-Christian catacombs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.