Abstract

Posttranscriptional gene silencing, also known as RNA interference, involves degradation of homologous mRNA sequences in organisms. In plants, posttranscriptional gene silencing is part of a defense mechanism against virus infection, and double-stranded RNA is the pivotal factor that induces gene silencing. In this paper, we got seven hairpin RNAs (hpRNAs) constructs against different hot-spot sequences of Tobacco mosaic virus (TMV) or Potato virus Y (PVY) genome. After expression in Escherichia coli HT115, we extracted the seven hpRNAs for the test in tobacco against TMV or PVY infection. The data suggest that different hpRNAs against different hot-spot sequences of TMV or PVY genome had different ability to protect tobacco plants from viral infection. The resistance to TMV conferred by the hpRNA against the TMV movement protein was stronger than other TMV hpRNAs; the resistance to PVY conferred by the hpRNA against the PVY nuclear inclusion b was better than that induced by any other PVY hpRNAs. Northern blotting of siRNA showed that the resistance was indeed an RNA-mediated virus resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.