Abstract

Nitric oxide (NO) has been implicated in the arterial vasodilation and associated vascular hyporesponsiveness to vasoconstrictors observed in liver cirrhosis. Bacteria, potent activators of NO and TNF-alpha synthesis, are found in the mesenteric lymph nodes (MLNs) of ascitic cirrhotic rats. Here, we investigated the impact of bacterial translocation (BT) to MLNs on TNF-alpha production, vascular NO release, and contractility in the mesenteric vasculature of ascitic cirrhotic rats. Vascular response to the alpha-adrenoagonist methoxamine, which is diminished in the superior mesenteric arterial beds of cirrhotic rats, is further blunted in the presence of BT. BT promoted vascular NO release in cirrhotic rats, an effect that depended on pressure-induced shear stress and was blocked by the NO inhibitor N(omega)-nitro-L-arginine. Removing the endothelium had the same effect. Endothelial NO synthase (eNOS), but not the inducible isoform (iNOS), was present in mesenteric vasculature of cirrhotic rats with and without BT, and its expression was enhanced compared with controls. TNF-alpha was induced in MLNs by BT and accumulated in parallel in the serum. This TNF-alpha production was associated with elevated levels of tetrahydrobiopterin (BH(4)), a TNF-alpha-stimulated cofactor and enhancer of eNOS-derived NO biosynthesis and NOS activity in mesenteric vasculature. These findings establish a link between BT to MLNs and increased TNF-alpha production and elevated BH(4) levels enhancing eNOS-derived NO overproduction, further impairing contractility in the cirrhotic mesenteric vasculature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.