Abstract
The synthesis of inorganic frameworks with specified and organized pore networks is of potential importance in catalysis1,2, separation technology3 and biomaterials engineering4,5. Ordered arrangements of porous channels have been produced in silica-based materials by post-synthetic removal of surfactant templates from inorganic–organic mesostructures6,7. The resulting pore sizes are commensurate with the packing dimensions of the organic molecules, and are currently limited to length scales of up to 10nm. Here we show how a bacterial superstructure, consisting of a thread of coaligned multicellular filaments of Bacillus subtilis8,9, can be used to extend the length scale of inorganic materials patterning. We produce ordered macroporous fibres of either amorphous silica or ordered mesoporous silica6,7 (MCM-41) by template-directed mineralization of the interfilament spaces followed by removal of organic material by heating to 600°C. The inorganic macrostructures consist of a macroporous framework of 0.5-μm-wide channels with curved walls of either silica or mesoporous silica, 50 to 200 nm in thickness. The formation of ordered pores in the MCM-41 replica on both the mesoscopic and macroscopic length scales illustrates how supramolecular and supercellular templates might be combined for the fabrication of inorganic materials with structural hierarchy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nature
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.