Abstract

The Teredinidae (shipworms) are a morphologically diverse group of marine wood-boring bivalves that are responsible each year for millions of dollars of damage to wooden structures in estuarine and marine habitats worldwide. They exist in a symbiosis with cellulolytic nitrogen-fixing bacteria that provide the host with the necessary enzymes for survival on a diet of wood cellulose. These symbiotic bacteria reside in distinct structures lining the interlamellar junctions of the gill. This study investigated the mode by which these nutritionally essential bacterial symbionts are acquired in the teredinid Bankia setacea. Through 16S ribosomal DNA (rDNA) sequencing, the symbiont residing within the B. setacea gill was phylogenetically characterized and shown to be distinct from previously described shipworm symbionts. In situ hybridization using symbiont-specific 16S rRNA-directed probes bound to bacterial ribosome targets located within the host gill coincident with the known location of the gill symbionts. These specific probes were then used as primers in a PCR-based assay which consistently detected bacterial rDNA in host gill (symbiont containing), gonad tissue, and recently spawned eggs, demonstrating the presence of symbiont cells in host ovary and offspring. These results suggest that B. setacea ensures successful inoculation of offspring through a vertical mode of symbiont transmission and thereby enables a broad distribution of larval settlement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call