Abstract

The bacterial quorum sensing signals N-acyl homoserine lactone (AHL) signals are able to regulate a diverse array of physiological activities, such as symbiosis, virulence and biofilm formation, depending on population density. Recently, it has been discovered that the bacterial quorum sensing (QS) signal molecules can induce extensive response of higher eukaryotes including plants and mammalian cells. However, little is known about the response of fungi reacting to these bacterial signals. Here we showed that Saccharomyces cerevisiae, as an ancient eukaryote and widely used for alcoholic beverage and bioethanol production, exposed to short-chain 3-OC6-HSL and long-chain C12-HSL appeared obvious changes in morphology and ethanol tolerance. AHLs could increase the frequency of cells with bipolar and multipolar buds, and these changes did not present distinct differences when induced by different types (3-OC6-HSL and C12-HSL) and varied concentrations (200 nM and 2 μM) of AHLs. Further investigation by flow cytometer displayed that the cells untreated by AHLs reduced cell size (decreased FSC) and enhanced intracellular density (increased in SSC), compared with the AHLs-induced cells after incubation 6 h. In addition, the long-chain C12-HSL could slightly increase the ethanol tolerance of S. cerevisiae while the short-chain HSL obviously decreased it. Our study would be valuable to further research on the interaction between prokaryotic and eukaryotic microbes, and be reference for industrial production of bioethanol.

Highlights

  • Microbes communicate with each other using chemical signal molecules, termed autoinducers (AI) or quorum sensing molecules (QSM)

  • The results demonstrated that there was no obvious difference neither in each acyl homoserine lactone (AHL)-treated group nor between AHLs-treated groups and control group, which indicated that the exogenous AIs of this study had no effects on cellular growth density of S. cerevisiae

  • Cellular morphological observation of AHL‐treated S. cerevisiae by optical microscope According to the growth curve of S. cerevisiae (Fig. 1), microscopic observation of S. cerevisiae began at 12 h when yeasts were growing at logarithmic phase

Read more

Summary

Introduction

Microbes communicate with each other using chemical signal molecules, termed autoinducers (AI) or quorum sensing molecules (QSM). When the signal molecules accumulate a threshold, the communicating microbes begin to alter gene expression, and behavior, in response (Waters and Bassler 2005). This process, termed quorum sensing (QS), initiates many important behaviors of bacteria including bioluminescence, sporulation, toxic factors, biofilm formation and other processes (Llamas et al 2004; Whitehead et al 2001). Tyrosol, phenylethanol and tryptophol are all known fungal QSMs (Chen et al 2004; Lingappa et al 1969). In S. cerevisiae, phenylethanol and tryptophol as QSMs were found to regulate morphogenesis during nitrogen starvation conditions (Chen and Fink 2006)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.