Abstract

This review systematizes and analyzes the data published over the past decade, devoted to the study of low-molecular-weight high affinity iron chelators – siderophores. Siderophores, which are found in bacteria, fungi and mammals, are able to extract iron from insoluble inorganic compounds, and in the host organism – from complexes with proteins that perform the function of nonspecific protection of mammals from infections. The extracted iron is delivered to cells through surface protein receptors specific for each siderophore, as well as various protein transport systems that make up membranes. Siderophores play an important role in virulence in pathogenic bacteria, performing many functions in the host organism, in addition to providing microbes with iron and other biological metals. They participate in the storage of excess iron, toxic to cells, protect bacteria from reactive oxygen compounds, compete for iron with phagocytes, and have a harmful effect on host cells, acting as secreted bacterial toxin in some cases. Bacterial siderophores perform a signaling function and regulate both, their own synthesis and the synthesis of other virulence factors. Many pathogenic bacteria produce several siderophores that are active under different conditions, against various sources of iron in the host organism and at different stages of infectious process. The review presents the results of the experimental studies aimed at elucidating the structure and diverse functions of bacterial siderophores, the mechanisms of their biosynthesis and regulation of expression, as well as the role of these molecules in the physiology and virulence of pathogenic bacteria. Special emphasis is put on siderophores of bacteria causing particularly dangerous infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call