Abstract

In this article, we examine a large number of combinations of growth models, with separate attention to cell volume, cylindrical surface-area, polar caps, nascent poles, onset of constriction, precision of cell division and interdivision-time dispersion, for Escherichia coli cells growing in steady state at various doubling times. Our main conclusion is striking, and quite general: exponential cylindrical surface-area growth is not possible, irrespective of the behaviour of cell volume, the polar regions, the nascent poles, or any other feature of cell growth—such cells never reach steady state. The same is true of linear cylindrical surface-area growth, regardless of when during the cell cycle the doubling in growth rate takes place. Only after the introduction of feedback into the surface-area growth law, do the cultures attain steady state, all of them. The other components of the models contribute only marginally to the properties of the steady state. Thus, whether the feedback applies just to the cylindrical portion of the cell or to its entire surface area affects only the coefficient of variation of cell radius and the radius–volume correlation. The dynamics of old-pole maintenance, constant area or constant shape, influences the radius–length and radius–volume correlations and, to a much lesser extent, the coefficients of variation of cell radius and length; how the nascent poles grow, whether linearly or exponentially, does not seem to matter at all. The absolute dimensions of the cells are set by the growth rate of the culture and have almost no effect when the feedback is taken to apply to the entire cell surface area; when it is limited to the cylindrical portion of the cell, however, both radius–length and radius–volume correlations increase with increasing doubling time. Comparison with published values was inconclusive. The nature of cell surface-area growth has therefore been settled, but whether the volume increases by simple-exponential or by pseudo-exponential growth, or whether the old poles maintain a constant shape or a constant area during the cell cycle, can be determined only with more precise experimental data. The form of nascent-pole growth is not resolvable by present techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call