Abstract
Identifying the origins of biological traces is critical for the reconstruction of crime scenes in forensic investigations. Traditional methods for body fluid identification rely on chemical, enzymatic, immunological, and spectroscopic techniques, which can be sample-consuming and depend on simple color-change reactions. However, these methods have limitations when residual samples are insufficient after DNA extraction. This study aimed to develop a method for body fluid identification by leveraging bacterial DNA profiling to overcome the limitations of the conventional approaches. Bacterial profiles were determined by sequencing the hypervariable region of the 16S rRNA gene,using DNA metabarcoding of evidence collected from criminal cases. Amplicon sequence variants (ASVs) were analyzed to identify significant microbial patterns in different body fluid samples. The bacterial profile-based method demonstrated high discriminatory power with a machine learning model trained using the naïve Bayes algorithm, achieving an accuracy of over 98% in classifying samples into one of four body fluid types: blood, saliva, vaginal secretion, and mixture traces of vaginal secretions and semen. Bacterial profiling enhances the accuracy and robustness of body fluid identification in forensic analysis, providing a valuable alternative to traditional methods by utilizing DNA and microbial community data despite the uncontrollable conditions. This approach offers significant improvements in the classification accuracy and practical applicability in forensic investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.