Abstract

Size-fractionated bacterial production, abundance and α- and β- glucosidase enzyme activities were studied with respect to changes in hydrography, total suspended matter (TSM), chlorophyll a, particulate organic carbon and nitrogen ratio (POC:PON), 1.5 M NaCl-soluble and 10 mM EDTA-soluble carbohydrates (Sal-PCHO and CPCHO) and transparent exopolymeric particles (TEP) in the surface waters from July 1999–2000 at a shallow coastal station in Dona Paula Bay, west coast of India. The bulk of the total bacterial production and glucosidase activity were associated with particles (75% and >80%, respectively). Total bacterial production was linearly correlated to chlorophyll a ( r = 0.513; p < 0.05) whereas enzyme activity was significantly correlated to TSM (α-glucosidase: r = 0.721 ( p < 0.001); β-glucosidase: r = 0.596 ( p < 0.01)). Both α-glucosidase ( r = 0.514; p < 0.05) and β-glucosidase enzymes ( r = 0.598; p < 0.01) appeared to be involved in the degradation of CPCHO and Sal-PCHO, respectively. Changes in α-glucosidase/β-glucosidase ratios highlighted the varying composition of particulate organic matter. The bacterial uptake of 14C-labeled bacterial extracellular carbohydrate measured over 11 days showed a strong linear correlation between 14C-uptake and bacterial production using tritiated thymidine. The turnover rate of 14C-labeled carbohydrate-C was 0.52 d −1, higher than the estimated annual mean potential carbohydrate carbon turnover rate of 0.33 ± 0.2 d −1. Our study suggests that carbohydrates derived from sediments may serve as an important alternative carbon source sustaining the bacterial carbon demand in the surface waters of Dona Paula Bay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call