Abstract

Syringomycin, a peptide toxin and a virulence factor produced by the bacterial phytopathogen Pseudomonas syringae pv. syringae, stimulated the phosphorylation of several plasma membrane polypeptides of red beet storage tissue. Among these was a 100-kDa polypeptide, which corresponds in size to the proton pump ATPase. The phosphorylations were insensitive to hydroxylamine, indicating that the polypeptide phosphorylated intermediates involved phosphate ester bonds characteristic of protein kinase-mediated phosphorylation. Phosphorylation of the 100-kDa polypeptide and of most of the other polypeptides was reduced or eliminated by extraction of the membranes with 0.1% (wt/vol) sodium deoxycholate, a treatment that also eliminated the ability of the toxin to stimulate ATPase activity. Phosphorylation of the 100-kDa polypeptide was highest with 10-20 mug of syringomycin; the same amounts gave the highest degree of ATPase activity stimulation. Phosphorylation of some of the polypeptides was eliminated or decreased by the Ca(2+) chelator EGTA. Addition of excess Ca(2+) restored the phosphorylation of most of these polypeptides. We conclude that syringomycin acts by stimulating an endogenous membrane protein kinase activity, which results in the phosphorylation of several membrane polypeptides. One of the phosphorylated polypeptides corresponds in size to the proton pump ATPase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.