Abstract

Building practices began with human civilization. Cement is the most commonly used building construction material throughout the world. These traditional building materials have their own environmental impact during production, transportation, and construction, but also have limitations on building quality and cost. Biological construction materials are currently emerging technology to combat emissions from the construction sector. Different civil and biotechnology researchers have turned to microorganisms for the production of bio construction materials that are environmentally friendly, socially acceptable, and economically feasible but can also produce high strength. Scanning electron microscope (SEM) and X-Ray diffraction (XRD) are the most characterization methods used to observe and ensure the production of calcite precipitate as bacterial concrete. As compared to conventional concrete, bacterial concrete was greater by 35.15% in compressive strength, 24.32% in average tensile strength, and 17.24% in average flexural strength, and it was 4 times lower in water absorption and 8 times lower in acid resistivity than conventional concrete. Genetic engineering has great potential to further enhance the mechanical strength of bacterial concrete for use in crack repairs in existing buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.