Abstract

Many bacterial species have a nonhomologous end joining system of DNA repair driven by dedicated DNA ligases (LigD and LigC). LigD is a multifunctional enzyme composed of a ligase domain fused to two other catalytic modules: a polymerase that preferentially adds ribonucleotides to double-strand break ends and a phosphoesterase that trims 3'-oligoribonucleotide tracts until only a single 3'-ribonucleotide remains. LigD and LigC have a feeble capacity to seal 3'-OH/5'-PO(4) DNA nicks. Here, we report that nick sealing by LigD and LigC enzymes is stimulated by the presence of a single ribonucleotide at the broken 3'-OH end. The ribonucleotide effect on LigD and LigC is specific for the 3'-terminal nucleotide and is either diminished or abolished when additional vicinal ribonucleotides are present. No such 3'-ribonucleotide effect is observed for bacterial LigA or Chlorella virus ligase. We found that in vitro repair of a double-strand break by Pseudomonas LigD requires the polymerase module and results in incorporation of an alkali-labile ribonucleotide at the repair junction. These results illuminate an underlying logic for the domain organization of LigD, whereby the polymerase and phosphoesterase domains can heal the broken 3'-end to generate the monoribonucleotide terminus favored by the nonhomologous end joining ligases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.