Abstract

In certain strictly anaerobic bacteria, the energy for growth is derived entirely from a decarboxylation reaction. A prominent example is Propionigenium modestum, which converts the free energy of the decarboxylation of (S)-methylmalonyl-CoA to propionyl-CoA (DeltaG degrees =-20.6 kJ/mol) into an electrochemical Na(+) ion gradient across the membrane. This energy source is used as a driving force for ATP synthesis by a Na(+)-translocating F(1)F(0) ATP synthase. According to bioenergetic considerations, approximately four decarboxylation events are necessary to support the synthesis of one ATP. This unique feature of using Na(+) instead of H(+) as the coupling ion has made this ATP synthase the paradigm to study the ion pathway across the membrane and its relationship to rotational catalysis. The membrane potential (Deltapsi) is the key driving force to convert ion translocation through the F(0) motor components into torque. The resulting rotation elicits conformational changes at the catalytic sites of the peripheral F(1) domain which are instrumental for ATP synthesis. Alkaliphilic bacteria also face the challenge of synthesizing ATP at a low electrochemical potential, but for entirely different reasons. Here, the low potential is not the result of insufficient energy input from substrate degradation, but of an inverse pH gradient. This is a consequence of the high environmental pH where these bacteria grow and the necessity to keep the intracellular pH in the neutral range. In spite of this unfavorable bioenergetic condition, ATP synthesis in alkaliphilic bacteria is coupled to the proton motive force (DeltamuH(+)) and not to the much higher sodium motive force (DeltamuNa(+)). A peculiar feature of the ATP synthases of alkaliphiles is the specific inhibition of their ATP hydrolysis activity. This inhibition appears to be an essential strategy for survival at high external pH: if the enzyme were to operate as an ATPase, protons would be pumped outwards to counteract the low DeltamuH(+), thus wasting valuable ATP and compromising acidification of the cytoplasm at alkaline pH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call