Abstract

Type IV pili are bacterial nanomotors that mediate two opposing behaviors on surfaces, spreading and clustering. Here we show that the velocity of motile Neisseria gonorrhoeae depends quantitatively on the fluidity of the phospholipid membrane surface. Using microcontact printing, we confined the surface motility to nonfluid islands within a fluid lipid membrane. On an array of islands, the transition from spreading to clustering was analyzed in real time and at the single cell level, showing that it was triggered by the number of bacteria (7.5 +/- 0.3) for small islands and by the surface density (56 +/- 2%) when the size of the island exceeded 25 microm(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.