Abstract
The human microbiota greatly affects physiology and disease; however, the contribution of bacteria to the response to chemotherapeutic drugs remains poorly understood. Caenorhabditis elegans and its bacterial diet provide a powerful system to study host-bacteria interactions. Here, we use this system to study how bacteria affect the C.elegans response to chemotherapeutics. We find that different bacterial species can increase the response to one drug yet decrease the effect of another. We perform genetic screens in two bacterial species using three chemotherapeutic drugs: 5-fluorouracil (5-FU), 5-fluoro-2'-deoxyuridine (FUDR), and camptothecin (CPT). We find numerous bacterial nucleotide metabolism genes that affect drug efficacy in C.elegans. Surprisingly, we find that 5-FU and FUDR act through bacterial ribonucleotide metabolism to elicit their cytotoxic effects in C.elegans rather than by thymineless death or DNA damage. Our study provides a blueprint for characterizing the role of bacteria in the host response to chemotherapeutics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.