Abstract

AbstractA potential antagonist, Bacillus sp. LYLB4 isolated from pear fruits, was tested for its antifungal activity against postharvest pear pathogens. LYLB4 had a remarkable antifungal effect on Botryosphaeria dothidea. Although it showed a weak inhibition effect on the growth of Rhizopus stolonifer on potato dextrose agar (PDA) plates, LYLB4 almost completely destroyed R. stolonifer during direct contact in potato dextrose broth (PDB). LYLB4 treatment was able to significantly reduce disease incidence (by 68.9% and 100%, respectively) and lesion diameter (by 68.7% and 100%, respectively) of ring rot caused by B. dothidea and soft rot caused by R. stolonifer in pears. LYLB4 also suppressed several other phytopathogens in vitro, suggesting a broad‐spectrum antagonistic activity against fungal pathogens. 16S rRNA and gyrA sequence analysis indicated that LYLB4 is closely related to B. velezensis. Genome mining indicated that LYLB4 had 11 secondary metabolites encoding clusters, but that the surfactin and fengycin gene clusters may not be functional because of a large deletion. Matrix‐assisted laser desorption ionization‐time of flight mass spectra (MALDI‐TOF‐MS) demonstrated that iturins were the major lipopeptides, and that C16/C17 Bacillomycin D synthesis was stimulated when LYLB4 was co‐cultured with B. dothidea compared to the control. Overall, these results demonstrate that the main biocontrol mechanism adopted by LYLB4 could be through the production of toxic metabolites and direct contact with pathogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.