Abstract

Lithotrophic Fe-oxidation at neutral pH is becoming recognized as an important microbial process. An overview of the microbial iron cycle is presented with an emphasis on the role of microbes that grow under microaerobic conditions at oxic-anoxic transition zones where Fe(II) is abundant. Examples of these environments from freshwater are considered. Contrary Creek is a spring-fed wetland in Virginia. Measurements over the course of a year showed that it had a consistent pH around 6, and Fe(II) concentrations ranged from 25 to 300 μ M, with the highest concentrations in the summer months. At all times abundant flocs of Fe-oxides composed principally of Lepthothrix ochracea sheaths were present. Based on observations at this site, and other sites, a model for microbial Fe mat formation is presented. A thermal site in Yellowstone National Park that had consistent circumneutral pH and high Fe(II) concentrations was also studied. This site did not have evidence for Fe-oxidizing bacteria, but was, instead, dominated by a cyanobacterial photosynthetic mat. Consideration is given to growth conditions for pure cultures of Fe-oxidizing bacteria (FeOB) in the laboratory. A novel method of growing FeOB on gradient plates was developed. This led to an increase of cell yields to 2 × 108 cells/ml, which is nearly an order of magnitude greater than previous methods have yielded. Finally, speculation is made as to the potential for conditions on Mars that might have been conducive for microbial Fe-oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.