Abstract

Adaptation to an environmental stress is essential for cell survival in all organisms, from E. coli to human. To respond to changes in their surroundings, bacteria utilize two-component systems (TCSs), also known as histidyl-aspartyl phosphorelay (HAP) systems that consist of a histidine kinase (HK) sensor and a cognate response regulator (RR). While mammals developed complex signaling systems involving serine/threonine/tyrosine kinases in stress response mechanisms, bacterial TCS/HAP systems represent a simple but elegant prototype of signal transduction machineries. HKs are known as a seductive target for anti-bacterial therapeutic development, because of their significance in pathological virulence in some bacteria such as Salmonella enterica. Recent molecular and structural studies have shed light on the molecular basis of the signaling mechanism of HK sensor kinases. This review will focus on recent advancements in structural investigation of signal sensing and transducing mechanisms by HKs, which is critical to our understanding of bacterial biology and pathology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.