Abstract

Vine disease detection is considered one of the most crucial components in precision viticulture. It serves as an input for several further modules, including mapping, automatic treatment, and spraying devices. In the last few years, several approaches have been proposed for detecting vine disease based on indoor laboratory conditions or large-scale satellite images integrated with machine learning tools. However, these methods have several limitations, including laboratory-specific conditions or limited visibility into plant-related diseases. To overcome these limitations, this work proposes a low-altitude drone flight approach through which a comprehensive dataset about various vine diseases from a large-scale European dataset is generated. The dataset contains typical diseases such as downy mildew or black rot affecting the large variety of grapes including Muscat of Hamburg, Alphonse Lavallée, Grasă de Cotnari, Rkatsiteli, Napoca, Pinot blanc, Pinot gris, Chambourcin, Fetească regală, Sauvignon blanc, Muscat Ottonel, Merlot, and Seyve-Villard 18402. The dataset contains 10,000 images and more than 100,000 annotated leaves, verified by viticulture specialists. Grape bunches are also annotated for yield estimation. Further, tests were made against state-of-the-art detection methods on this dataset, focusing also on viable solutions on embedded devices, including Android-based phones or Nvidia Jetson boards with GPU. The datasets, as well as the customized embedded models, are available on the project webpage.2

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.