Abstract

Bacterial foraging optimization algorithm (BFOA) has been widely accepted as a global optimization algorithm of current interest for distributed optimization and control. BFOA is inspired by the social foraging behavior of Escherichia coli. BFOA has already drawn the attention of researchers because of its efficiency in solving real-world optimization problems arising in several application domains. The underlying biology behind the foraging strategy of E.coli is emulated in an extraordinary manner and used as a simple optimization algorithm. This chapter starts with a lucid outline of the classical BFOA. It then analyses the dynamics of the simulated chemotaxis step in BFOA with the help of a simple mathematical model. Taking a cue from the analysis, it presents a new adaptive variant of BFOA, where the chemotactic step size is adjusted on the run according to the current fitness of a virtual bacterium. Nest, an analysis of the dynamics of reproduction operator in BFOA is also discussed. The chapter discusses the hybridization of BFOA with other optimization techniques and also provides an account of most of the significant applications of BFOA until date.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.